Profile Photo

DeepFuel-kit

AI-Guided Formulation of Next-Generation Sustainable Fuels

Peer-reviewed Publications

Pathways to sustainable fuel design from a probabilistic deep learning perspective
Rodolfo S. M. Freitas, Zhihao Xing, Fernando A. Rochinha, Roger F. Cracknell, Daniel Mira, Nader Karimi, Xi Jiang
Advances in Applied Energy, 2025. https://doi.org/10.1016/j.adapen.2025.100226
A data-driven multi-level simulation framework for ammonia-syngas combustion
Zhihao Xing, Rodolfo S. M. Freitas, Xi Jiang
Chemical Engineering Journal Advances, 2025. https://doi.org/10.1016/j.ceja.2025.100960
Machine learning-driven multi-objective optimisation of ammonia co-firing with highly reactive fuels
Zhihao Xing, Rodolfo S. M. Freitas, Xi Jiang
Energy Conversion and Management, 2025. https://doi.org/10.1016/j.enconman.2025.120071
Neural network potential-based molecular investigation of thermal decomposition mechanisms of ethylene and ammonia
Zhihao Xing, Rodolfo S. M. Freitas, Xi Jiang
Descriptors-based machine-learning prediction of cetane number using quantitative structure–property relationship
Rodolfo S. M. Freitas, Xi Jiang
Neural network potential-based molecular investigation of pollutant formation of ammonia and ammonia-hydrogen combustion
Zhihao Xing, Xi Jiang
Chemical Engineering Journal, 2024. https://doi.org/10.1016/j.cej.2024.151492
Towards predicting liquid fuel physicochemical properties using molecular dynamics guided machine learning models
Rodolfo S. M. Freitas, Ágatha P.F. Lima, Cheng Chen, Fernando A. Rochinha, Daniel Mira, Xi Jiang